Training Crew - Generating two pkl files

I’m using the following code to train a specific crew and this code is generating 2 pkl files, one with the filename, i’m calling and other with the name train_data.pkl.
I’ve 3 questions on this topic.

  1. What might be causing this 2nd file to be created.
  2. I’m building a flow where the pkl file should be created, inside the crew or the flow.
  3. How can I be sure that my crew is using the feedbacks of the pkl on the answers?

train.py
from produto_fornecedor.crews.poem_crew.poem_crew import TimeClienteProduto

n_iterations = 1
inputs = {“cliente”: “Alpagartas”, “materia_prima”:“Caulim”}
filename = “treinamento_time_ClienteProduto.pkl”

try:
TimeClienteProduto().crew().train(
n_iterations=n_iterations,
inputs=inputs,
filename=filename
)

except Exception as e:
raise Exception(f"An error occurred while training the crew: {e}")

crew.py

from crewai import Agent, Crew, Process, Task
from crewai.project import CrewBase, agent, crew, task
from crewai_tools import EXASearchTool, FirecrawlScrapeWebsiteTool
from src.produto_fornecedor.tools.custom_tool import FeedbackAgent
from pydantic import BaseModel
from typing import List

class Fabricas(BaseModel):
nome: str
cidade: str
estado: str

class ResumoCliente(BaseModel):
nome_empresa: str
segmento: str
produto_final: list =
fabricas: List[Fabricas] =

class CaracteristicasMateriaPrima(BaseModel):
caracteristicas: str
valorbase: str

class ResumoMateriaPrima(BaseModel):
nome_materia_prima: str
descricao_materia_prima: str
caracteristicas: List[CaracteristicasMateriaPrima]
aplicacoes: list =
links_laudos: str

class EtapasProcessoProdutivo(BaseModel):
etapa: str
descricao: str
materia_prima: list =
equipamentos: list =

class ResumoProcessoProdutivo(BaseModel):
resumo_processo: str
etapas: List[EtapasProcessoProdutivo]

@CrewBase
class TimeClienteProduto:
“”“Poem Crew”“”

agents_config = "config/agents.yaml"
tasks_config = "config/tasks.yaml"
fire_api = 'fc-343c4fc4962d49959821d91af963f14e'


##Chamando agentes TimeClienteProduto
@agent
def especialista_cliente(self) -> Agent:
    return Agent(
		config=self.agents_config['especialista_cliente'],
		tools=[
            EXASearchTool(api_key='30b2cb5f-bc5b-42f4-81d5-339921e42100'),
            FirecrawlScrapeWebsiteTool(),
        ],
        verbose=True,
        memory=True,
        cache=True
    )

@agent
def especialista_material(self) -> Agent:
    return Agent(
		config=self.agents_config['especialista_material'],
		tools=[
			EXASearchTool(api_key='30b2cb5f-bc5b-42f4-81d5-339921e42100'),
            FirecrawlScrapeWebsiteTool(),
		],
		verbose=True,
        memory=True,
        cache= True
    )

@agent
def especialista_processo_produtivo(self) -> Agent:
    return Agent(
		config=self.agents_config['especialista_processo_produtivo'],
		tools=[
			EXASearchTool(api_key='30b2cb5f-bc5b-42f4-81d5-339921e42100'),
            FirecrawlScrapeWebsiteTool(),
		],
		verbose=True,
        memory=True,
        cache=True
	)

##Chamando tarefas TimeClienteProduto
@task
def pesquisar_cliente(self) -> Task:
    return Task(
		config=self.tasks_config['pesquisar_cliente'],
        output_pydantic= ResumoCliente
	)

@task
def pesquisar_material(self) -> Task:
    return Task(
		config=self.tasks_config['pesquisar_material'],
		output_pydantic= ResumoMateriaPrima,
        output_file='materia_prima.md'
	)

@task
def pesquisar_processo_produtivo(self) -> Task:
    return Task(
		config=self.tasks_config['pesquisar_processo_produtivo'],
		output_pydantic= ResumoProcessoProdutivo,
        context= [self.pesquisar_cliente(), self.pesquisar_material()],
        output_file='processo_produtivo.md'
	)

@crew
def crew(self) -> Crew:
    """Creates the Research Crew"""
    # To learn how to add knowledge sources to your crew, check out the documentation:
    # https://docs.crewai.com/concepts/knowledge#what-is-knowledge

    return Crew(
        agents=self.agents,  # Automatically created by the @agent decorator
        tasks=self.tasks,  # Automatically created by the @task decorator
        process=Process.sequential,
        verbose=True,
    )